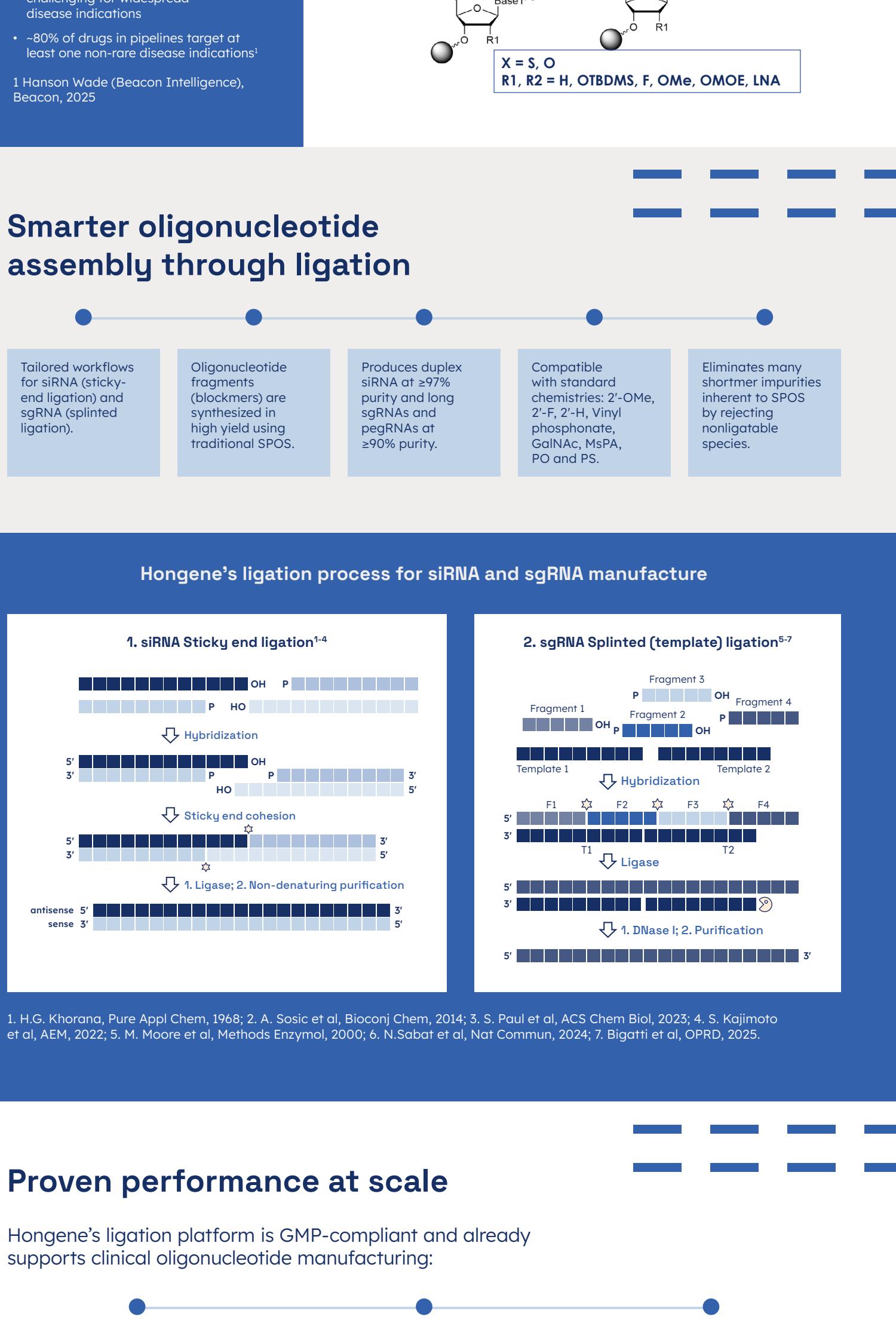


Why chemoenzymatic ligation matters in RNA manufacturing

The demand for RNA therapeutics is accelerating, but conventional solid-phase oligonucleotide synthesis (SPOS) is limited in scale, yield, and sustainability.


This visual guide illustrates how Hongene's chemoenzymatic ligation platform offers a next-generation solution: enabling high-purity siRNA and sgRNA manufacturing at scale, with improved scalability and yield, and reduced environmental impact and cost.

Market potential of siRNA drugs

Market demand for siRNA drugs and CMC challenges expected to grow significantly over the next decade

Cardiovascular disease area	Example siRNA drug	Target gene	Development phase	Possible approval
Hypercholesterolemia	Inclisiran	PCSK9	4	Approved
Hypertriglyceridemia	Plozisiran	APOC3	4	Approved
Elevated Lp(a)	Olpasiran	LPA	3	- 2027
Hypertension	Zilebesiran	AGT	3	- 2030
NASH/MASH	Rapiroisiran	HSD	2	- 2030
Obesity	Multiple	INHBE	1/2a	2030s

1. H.G. Khorana, 2022; 2. M. Moore et al., Methods Enzymol., 2000; 3. N. Sabat et al., ACS Chem Biol., 2023; 4. S. Kajimoto et al., AEM, 2022; 5. M. Moore et al., Methods Enzymol., 2000; 6. N. Sabat et al., Nat Commun., 2024; 7. Bigiotti et al., OPRD, 2025.

Proven performance at scale

Hongene's ligation platform is GMP-compliant and already supports clinical oligonucleotide manufacturing.

>1 kg of PCSK9 siRNA drug substance produced under GMP to support GMP purity applications with high yield. No new ligation-related impurities observed and impurities below 1.0% SPOS.

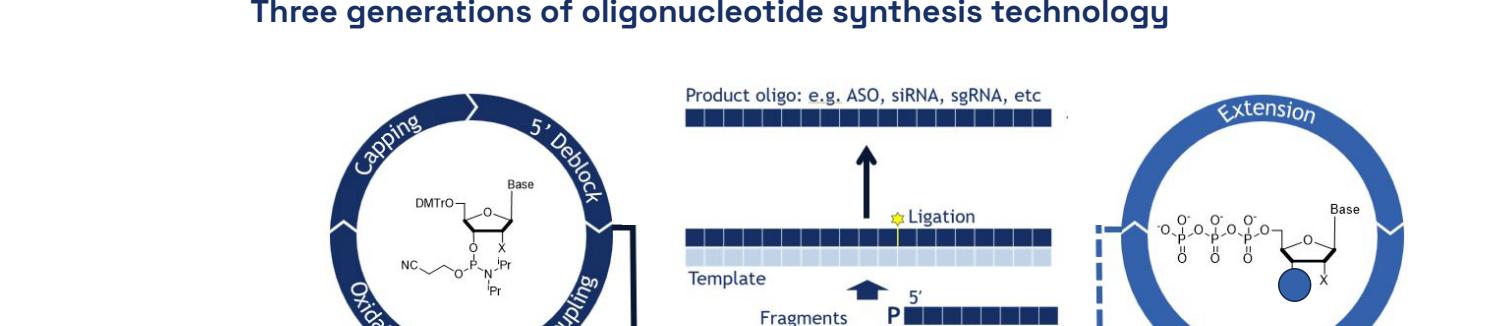
1. H.G. Khorana, 2022; 2. M. Moore et al., Methods Enzymol., 2000; 3. N. Sabat et al., ACS Chem Biol., 2023; 4. S. Kajimoto et al., AEM, 2022; 5. M. Moore et al., Methods Enzymol., 2000; 6. N. Sabat et al., Nat Commun., 2024; 7. Bigiotti et al., OPRD, 2025.

A more sustainable path forward

Hongene is a member of the Roundtable in advancing nucleotide sustainability.

Aqueous-catalyzed ligation occurs in aqueous media with reduced solvent use and improved atom economy.

Crude-to-crude (C-to-C) workflows eliminate chromatography, cutting burden.


Will further reduce waste and energy demands vs SPOS, as part of Hongene's responsible manufacturing.

Scalable. Sustainable. Clinically proven.

Contact us today!

Bring your RNA to life. www.hongene.com

Three generations of oligonucleotide synthesis technology

Table 1. Summary of exemplary siRNAs synthesized by ligation

Molecule	GMP	SS/AS	Oligonucleotide chemistry	Backbone	GalNAc	Synthesis ^a	Yield ^b	Purity ^c
Inclisiran siRNA	-	21/21	2'-OMe, 2'-F, 2'-deoxy	PS/PO	✓	P-to-P	26%	97%
Divalent siRNA	-	16/21	2'-OMe, 2'-F, exNA, (E)-VP	PS/PO/TEG	X	P-to-P	19%	97%
C-to-P siRNA	-	21/23	2'-OMe, 2'-F	PS/PO	✓	C-to-P	43%	96%
CDMO siRNA	N	19/21	2'-OMe, 2'-F	PS/PO	✓	C-to-P	>960 g	95%
CDMO siRNA	Y	19/21	2'-OMe, 2'-F	PS/PO	✓	P-to-P	>1,020 g	97%

^a P-to-P = HPLC purified fragments and purified siRNA; C-to-P = UF/DF processed fragments and HPLC purified siRNA; ^b % Yield based on theoretical purified fragments calculated from purified siRNA; ^c fragment UF; ^d Denaturing 1D-RP-UPLC method; ^e HPLC purified siRNA.

1. H.G. Khorana, 2022; 2. M. Moore et al., Methods Enzymol., 2000; 3. N. Sabat et al., ACS Chem Biol., 2023; 4. S. Kajimoto et al., AEM, 2022; 5. M. Moore et al., Methods Enzymol., 2000; 6. N. Sabat et al., Nat Commun., 2024; 7. Bigiotti et al., OPRD, 2025.

Built to scale with innovation at its core

Scalable. Sustainable. Clinically proven.

Contact us today!

Bring your RNA to life. www.hongene.com

Hongene: Pioneering ligation technology for next-generation RNA medicines.

Scalable. Sustainable. Clinically proven.

Contact us today!

Bring your RNA to life. www.hongene.com

Three generations of oligonucleotide synthesis technology

Table 1. Summary of exemplary siRNAs synthesized by ligation

Molecule	GMP	SS/AS	Oligonucleotide chemistry	Backbone	GalNAc	Synthesis ^a	Yield ^b	Purity ^c
Inclisiran siRNA	-	21/21	2'-OMe, 2'-F, 2'-deoxy	PS/PO	✓	P-to-P	26%	97%
Divalent siRNA	-	16/21	2'-OMe, 2'-F, exNA, (E)-VP	PS/PO/TEG	X	P-to-P	19%	97%
C-to-P siRNA	-	21/23	2'-OMe, 2'-F	PS/PO	✓	C-to-P	43%	96%
CDMO siRNA	N	19/21	2'-OMe, 2'-F	PS/PO	✓	C-to-P	>960 g	95%
CDMO siRNA	Y	19/21	2'-OMe, 2'-F	PS/PO	✓	P-to-P	>1,020 g	97%

^a P-to-P = HPLC purified fragments and purified siRNA; C-to-P = UF/DF processed fragments and HPLC purified siRNA; ^b % Yield based on theoretical purified fragments calculated from purified siRNA; ^c fragment UF; ^d Denaturing 1D-RP-UPLC method; ^e HPLC purified siRNA.

1. H.G. Khorana, 2022; 2. M. Moore et al., Methods Enzymol., 2000; 3. N. Sabat et al., ACS Chem Biol., 2023; 4. S. Kajimoto et al., AEM, 2022; 5. M. Moore et al., Methods Enzymol., 2000; 6. N. Sabat et al., Nat Commun., 2024; 7. Bigiotti et al., OPRD, 2025.

A more sustainable path forward

Hongene is a member of the Roundtable in advancing nucleotide sustainability.

Aqueous-catalyzed ligation occurs in aqueous media with reduced solvent use and improved atom economy.

Crude-to-crude (C-to-C) workflows eliminate chromatography, cutting burden.

Will further reduce waste and energy demands vs SPOS, as part of Hongene's responsible manufacturing.

Scalable. Sustainable. Clinically proven.

Contact us today!

Bring your RNA to life. www.hongene.com

Three generations of oligonucleotide synthesis technology

Table 1. Summary of exemplary siRNAs synthesized by ligation

Molecule	GMP	SS/AS	Oligonucleotide chemistry	Backbone	GalNAc	Synthesis ^a	Yield ^b	Purity ^c
Inclisiran siRNA	-	21/21	2'-OMe, 2'-F, 2'-deoxy	PS/PO	✓	P-to-P	26%	97%
Divalent siRNA	-	16/21	2'-OMe, 2'-F, exNA, (E)-VP	PS/PO/TEG	X	P-to-P	19%	97%
C-to-P siRNA	-	21/23	2'-OMe, 2'-F	PS/PO	✓	C-to-P	43%	96%
CDMO siRNA	N	19/21	2'-OMe, 2'-F	PS/PO	✓	C-to-P	>960 g	95%
CDMO siRNA	Y	19/21	2'-OMe, 2'-F	PS/PO	✓	P-to-P	>1,020 g	97%

^a P-to-P = HPLC purified fragments and purified siRNA; C-to-P = UF/DF processed fragments and HPLC purified siRNA; ^b % Yield based on theoretical purified fragments calculated from purified siRNA; ^c fragment UF; ^d Denaturing 1D-RP-UPLC method; ^e HPLC purified siRNA.

1. H.G. Khorana, 2022; 2. M. Moore et al., Methods Enzymol., 2000; 3. N. Sabat et al., ACS Chem Biol., 2023; 4. S. Kajimoto et al., AEM, 2022; 5. M. Moore et al., Methods Enzymol., 2000; 6. N. Sabat et al., Nat Commun., 2024; 7. Bigiotti et al., OPRD, 2025.

A more sustainable path forward

Hongene is a member of the Roundtable in advancing nucleotide sustainability.

Aqueous-catalyzed ligation occurs in aqueous media with reduced solvent use and improved atom economy.

Crude-to-crude (C-to-C) workflows eliminate chromatography, cutting burden.

Will further reduce waste and energy demands vs SPOS, as part of Hongene's responsible manufacturing.

Scalable. Sustainable. Clinically proven.

Contact us today!

Bring your RNA to life. www.hongene.com

Three generations of oligonucleotide synthesis technology

